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Particle correlations in anisotropic traps

P.KOSCIK, A. OKOPINSKA' ,
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We study the two-dimensional system of charged particles in an anisotropic harmonic potential which serves well as a
model of a quantum dot. A numerical analysis of the dependence of the one-particle density and the correlation functions on
the harmonic frequencies aspect ratio is presented. For the two-patrticle system we show that in the case of aspect ratio wy :
wx = 2, when the problem becomes completely separable, the quasi-exact solutions may be obtained at particular values of
confinement frequencies. We use the analytically known eigenfunctions to derive the exact results for various correlation
characteristics of the system. The frequencies at which the exact solutions exist correspond to the interesting case of weak

confinement, where the correlation effects are important and manifest by formation of Wigner molecules.
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1. Introduction

Studies of quantum systems trapped in confining
potentials attract considerable attention in view of their
possible application to quantum computing. Particularly
promising are the physically realized systems of charged
particles such as quantum dots (QDs) or few-ion systems
in electromagnetic traps. In both cases the inter-particle
interaction is Coulombic and the confinement may be
modeled by a harmonic potential, the anisotropy of which
strongly influences the properties of the system. Such a
potential not only provides a good approximation of
realistic structures but also is convenient from the
theoretical point of view since the center-of-mass motion
may be separated out. Here we concentrate on the two-
dimensional (2D) structures, realized by nanoscale
semiconductor QDs containing a tunable number of
electrons that are formed by etching techniques or
patterning of the gate electrodes [1]. As a simple example
of a quantum mechanical system, the QDs are a useful tool
for testing approximation techniques in many-body theory.
The case of weak confinement (low density limit) where
the correlations between electrons become stronger [2] is
especially interesting. When the Coulomb interaction
dominates, the electrons tend to localize around the
classical equilibrium positions, creating ordered spatial
structures called Wigner molecules, which are the finite
size counterpart to the crystal phase of the electron gas
predicted by Wigner [3]. At present the problem of
crystallization in circular quantum dots containing many
electrons is well understood [4]. The charge distribution in
elliptical, square and triangular QDs has been also studied
by using the exact diagonalization approach [5]. Especially
the properties of QDs containing two electrons have been
extensively investigated in the case of circular [6-8],
elliptical [9] and polygonal [10, 11] confinement.

In the present work we study the properties of the
two-electron QD confined by an anisotropic harmonic
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is separable in two cases: that of @~ @=wm,, and that of
o, :@=2 (equivalent to the case of @, : @, = 1/2, under the
exchange of @, and @,). In the isotropic confinement case
of o, = w,, the problem of the relative motion separates in
polar coordinates. This case was much studied in the
literature [12-14] and its quasi-solvability at particular
values of frequency @, has been pointed out [15]. The
closed-form solutions may be useful for determining the
exact characteristics of the system. In the anisotropic
confinement with the aspect ratio @, : @, = 2, the problem
is separable in parabolic coordinates [9]. Recently we have
shown that also in this case the closed-form solutions may
be obtained for particular values of frequency w; [16]. In
this work we use the exact wave functions to determine
various characteristics of QDs in both the @, : @, = 1 and
®, : @ = 2 case. Later, we provide an approximate
analytical approach that is particularly suitable to study the
Wigner crystallization of electrons in a QD with an
arbitrary anisotropy. The outline of our work is as follows.
In section II we present the theoretical model of a two-
electron QD.

In section III we discuss the separable cases and
quasi-exact solutions which are used to study various
ground state characteristics. The comparison of the
harmonic approximation with the exact results is also
made. The paper ends with concluding remarks in section
Iv.

2. Two-electron quantum dot

The Hamiltonian of the QD consisting of two
electrons can be written as



Particle correlations in anisotropic traps 1733

2

2 2
D; m. . 5 2 2.2 €
H = L+ X +wy)|+————
2{2% z(m Vi)

i=1 & —h

» (D

where m- is the effective electron mass and &, the

effective  dielectric  constant. The corresponding
Schrodinger equation is given by
H'ZZ/(I"],VQ):&T(V],VZ), (2)

After  transformationX = x/a,; y=y/a,,  where

2
a,=h ¢,/ m,ﬂe2 is the effective Bohr radius, the
equation takes a form
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where c?)x,y = m*afa)x’v /2h  £=¢&/R° and the

effective Rydberg constant R* =m,e*/#’c>. Notice

that the dimensionless parameters C?JX , measure the ratio

of the confinement and interaction energies, and C?)X v —0

corresponds to strong correlation regime. In the following,
we skip the hats over the spatial coordinates, frequencies
and energies. Introducing center of mass (CM) R =1/2 (1,
+ 1) =(X; Y) and relative coordinates r =1, - 11 = (x; ),
the Hamiltonian splits into # = H* + H' with the CM
part H® = -V /4 + 4> X? +wa2) and  the

relative motion Hamiltonian
1
- 2 2.2 2.2
H =-V + [a)xx +oy ]+; Upon

representing the spatial wave function as the product of
CM and relative motion functions

F(x,p, X,Y) =P (X, )Y (x,), @

the equation of motion (3) yields the two equations
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where ¢ = & + &. The solution of CM lequation (5) is
given by

1 1
4 04
PIOMON

R —2(0, X’ +0,Y?)
V., (X,Y)= e !

n . m

22" 2 [z \Jnim! ™
H,2\0,X)H,20,Y)

where H, is the Hermite polynomial of nth order, and the
corresponding energy reads

gﬁm =20 (n+ %) +20,(m+ %) )

The problem is thus reduced to solving the 2D relative
motion equation (6), which can be performed numerically.
The symmetry under electron exchange requires the spatial
wave function to be symmetric or antisymmetric
depending on the total spin of the system. As the

CM coordinate remains the same upon the interchange
of electrons, the symmetry requirement reduces to the
symmetry of the relative wave-function under inversion r
— -r. Because of the invariance of equation (6) to
reflections about the x- and y-axis, the (x; y)-parity of the
relative motion spatial wave-functions is well-defined.

In this work we study particularly carefully the two
special cases, ®, = @, and @, = 2®,, where the problem
can be simplified by separating the variables. In both cases
the problem appears quasi-solvable, i.e some solutions can
be obtained in closed-form. We will use the exact
solutions to study the ground state characteristics in both
the isotropic and anisotropic confinement potential.

3. Ground state characteristics

There are various means to examine the
characteristics of a quantum system. Here we compare
them from the point of view of how well they describe the
correlations of the two particles in a harmonic trap. The
following characteristics will be discussed: one-particle
density, pair correlation function and conditional
probability distribution. Below we give the definitions of
the considered functions specified for the two-particle
system.

1. The one-particle density is defined by

r+r
)

2. The pair correlation function (PCF) is given by

n(r) = 2[ dr " ( 2|\P’(r1 - o

2
G(r)= ‘I’(}’,,r2 Zé‘(r,. —r,=r)\¥Y(n,n) )
i (10)
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3. The conditional probability distribution (CPD)
determines the probability for finding one particle at r =
(x; ) given that the other is at ry = (xo, yo). For the two
particle system CPD is just proportional to the modulus
squared of the wave-function

¥ (.
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(=)
P(r,r,) = X 3 (11)
[ar (=1, \PR(”T“))

A. Exact results
1. Isotropic confinement potential @, = @, = @,

In the circularly symmetric case, the Schrodinger
equation in polar coordinates (p; ¢) is transformed into
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By substituting

¥ (p.p) =" U (p)/\[p.m=01,..

in the above, we get the radial equation
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The quasi-exact solutions to the above equation found by
Taut [15] may be enumerated by integer numbers #. In this
work we consider the four lowest values of n, for which
the exact wave functions correspond to ground states. The
values of confinement frequencies

" = 1. 0.0833
12

P
o' = %(IO ~/73)~0.0270

n=4 1
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are determined by the procedure described in the
Appendix, where the corresponding wave functions can be

|
also found. It turns out that a);‘l = E is the largest value

of confinement frequency at which the exact solution is
known.
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Fig. 1. Charge density, PCF and CPD for the two-
electron QD in the case of isotropic confinement

In Fig. 1 we have plotted the density, PCF and CPD in
the above four cases. The one-particle density (plotted in
the left column) and the PCF (plotted in the midle column)
are circularly symmetric. It can be noted that for
decreasing @, the maximum of the charge density moves
from p= 0 to the circle of a radius p.2, where

12
Py =1/2°w; is the classical equilibrium distance

between Coulomb interacting particles in the trap.
Similarly, we may observe how the radius p,,, at which
the PCF attains a maximum, shifts toward p,,=2.

The most informative picture is obtained from the
CPD if the reference particle is fixed at its most probable
position, namely in the point 1,,, = (Oua/2,0), where g, is
determined from the maximum of the PCF. The CPD in
function of the position of the second electron r, namely
P(r; 1,,), plotted in the right column of Fig.1, clearly
shows that for @, < 0.01, a Wigner molecule is formed.
Observe that the Wigner crystallization does not show up
in the density plot, because the charges of separate particle
are not distinguishable in the rotationally invariant
electron density. This corresponds to the fact that the
lowest classical configuration is infinitely degenerate with
respect to rotations around the center of the trap.
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2.Confinement potential with anisotropy @, : @, =2

In the case of anisotropic confinement the only
separable case is that of @=2@. In 2D parabolic
coordinates

1
X =11, 25(7712 _7722)772 20, (15)

the Schrodinger equation (6) is transformed into the form
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For @®~2@w. the above solved by

Y(n,,1n,)=g,(,)g,(n7,) and the relative motion
problem is separated into the two ordinary differential
equations of the identical form

d’ ro2 2.6
[ _dﬂz _877]+a)x77j+ﬂj ]gj(nj):()

J
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equation is

,J’ (17

which are coupled by the condition f+f = 2 to be
satisfied by the separation constants £ and f . Bound-
state solutions are obtained at the values of & and f such

that the functions ¥ (77,,77,) vanish, as | 1Mo

The ground state solutions, in which we are interested in
the present work, correspond to the case of f; = =1
and the functions gj(77;) not having the nodal points.

As we have recently shown, the coupled equations (17)
appear quasi-solvable [16]. Th=e solution can be found in
closed form for particular values of @, that are enumerated
by an integer number # as discussed in the Appendix. The
values of @, forn=1; 2; 3, 4 are calculated to be given by
o =L 20,125

8

X

o™ =L ~0.156
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n=3 1
@' =——(5-2+/5) = 0.044
A 120( )

o™ = 1 _10-3y6)~0.0018 qs)
1472
They correspond to ground-states and, similarly as in
the case of isotropic confinement, they decrease for
increasing n. The plots of the density in the above four
cases are presented in Fig.2, where the positions of the
charges in the classical configuration ((x./2, 0), (-x./2, 0))
12
are also marked with x, =1/2°®} being the classical

distance between the electrons. The density is anisotropic,
reflecting the shape of the confining potential, and for

decreasing w; it tends to become spatially separated with
Gaussian-like peaks around the classical equilibrium
points. The number of density maxima is equal to the
particle number, which is the consequence of the fact that
the lowest classical configuration of the two-particle
system is non-degenerate. This is in difference to the case
of isotropic confinement, where the Wigner crystallization
does not show up in the density plot.

e -

-30-20-30 4 10 3 oW ~80-40-20 4 0 4D % -30-30-18 0 36 2 33

| K (5§
o= p(10-3v0)

e e

Fig. 2. Charge density, PCF and CPD of the two-
electron QD in the case of anisotropic confinement

The PCF is plotted in the middle column of Fig.2, its
behavior appears very similar to that of the density, only
the distances between the maxima Xx,, are slightly
different. In the last column we placed the plots of CPD
with the reference electron located in the most probable
position 1,, = (Xux=2; 0) as a function of the second
electron position P(1; 1,,,). In the case of the weakest

1
confinement (@, =l = g ), the CPD has a maximum in

the point (-x,,,/2, 0) that is diametrical to the position of
the reference electron with respect to the center of the trap,
but the probability of finding the second electron around
the first one is not negligible. This indicates that the
molecular-like state is not formed in agreement with the
fact that crystallization is not observed in the density plot.
For decreasing @,, the probability of finding the second
electron decreases around the reference electron position
creating a correlation hole. The electrons get more and
more localized in the vicinity of the points
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(Xma’2, 0) and (-x,,4,/2,0), which become close to the
classical  equilibrium  point. In the case of

n=

X * 2 0.0018 the correlation hole around the reference

electron clearly attests the presence of the Wigner
crystallization.

3. Correlation measures

The accurate description of an N-body interacting
system is a difficult task. The Hartree-Fock picture is
usually used as a first approximation since it provides a
simple way understanding by mapping an interacting
system onto a system of non-interacting particles moving
in a self-consistent field of other particles. In the one-
particle picture, the exchange correlations due to Fermi
statistics are accounted for, since the wave function of the
system is approximated by a determinant of single electron
functions, but the correlations arising from the mutual
interaction of electrons are beyond the scope of this
approach. The possible ways of including the Coulomb
correlations into this picture have been discussed first by
Wigner and Seitz [17]. They introduced a quantity called
the correlation energy, defined by the difference between
the exact ground-state energy and its Hartree-Fock
approximation

Ecorr :E'EHF ( 1 9)

which is frequently used until now as an energetic
measure of the correlation effect. However, E,,,. is not a
measurable quantity and its determination with the chosen
method of ground-state energy calculation is inconvenient
as it requires the Hartree-Fock calculation to be
additionally performed. In strict sense E,,, is not a
measure of the true correlation strength but a measure of
quality of the HF approximation. This shows up in the fact
that E., does not vanish in the limit of vanishing
interaction between electrons [18]. Therefore, various
purely quantum-kinematical measures have been
considered [19]. The simplest possibility of statistical
correlation coeficients has been discussed by Kutzelnigg et
al. [20]. Here we consider the Kutzelnigg coefficient that is
defined as a scalar quantity

<r1 -r2>—<l" : (20)

()=

<r> and <> are
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where the expectation values
determined by the one-electron density and <r1 -r2> is

determined by the two-electron distribution. For the two-
electron system the expectation value of a function f'of one
variable r is given by

(@) = [ fOmrrar en

and that of a function f of two variables r; and r, reads

(fGiom)) = [ £ )dror ) drdry,  22)

Since the origin of coordinate system is chosen in the
center of the harmonic trap, Eq.20 simplifies to the form

= <7”1 -r2> _ <r1r2 COS<912> ’
)

that shows that | t| <1. The Kutzelnigg coeficient vanishes
for independent particles, and its limiting values
correspond to perfect correlations case, with © = 1 for
coincident electrons positions and T = -1 for positions
diametrical with respect to the center of the trap.

(23)
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Fig. 3. Kutzelnigg coefficient t calculated for four exact
states in the case of isotropic (full line) and anisotropic
confinement (dotted line).

In Fig.3 we plotted the vales of the Kutzelnigg
coefficient for the exactly known states of the two-electron
QD at the partiycular values of @, and o, frequencies. In
order to compare the isotropic and anisotropic
confinement cases, the results are presented in function of

the geometric mean of the frequencies, Ja)xa)y that is a
measure of
confinement strength. For /@@, — 0, the value of

the Kutzelnigg coefficient decreases and tends to the value
7 = -1, which corresponds to the perfect Wigner
crystallization. We may see that anisotropy increases
correlations and the Wigner crystallization occurs at
stronger
confinement than in the corresponding spherical QDs.

B. Harmonic approximation
We have shown that Wigner crystallization for the

circularly symmetric two-electron QD takes place if @, is
smaller than some critical value
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a);’ ~0.01. This case has been studied in the

harmonic approximation [6] and it has been shown that a
qualitatively good description of the strong correlation
regime is obtained [6, 8]. We have shown that in the case
of anisotropic confinement with the aspect ratio @, : @, =1
: 2, where the exact solutions are available, the critical

value @ below which the Wigner crystallization occurs

is larger than in the circularly symmetric case. Here we
will study the case of anisotropic confinement potential
with an arbitrary aspect ratio using the harmonic
approximation, which is expected to perform well in the
case of weak confinement.

If , >, ) the
Vix,y)= a)jx2 + a)yzy2 +1/4x* + y2 in the relative

motion equation (6) has two local minima at the classical
equilibrium points (x., 0) and (-x, 0). Expansion into a
Taylor series around the minimum at r,,;, = (x.;, 0) yields

potential

V(x’y) ~ V(rm )+3a)f(x_xcl)2

+(0] —))y* +...+..

in

24

where the first term is a classical dot energy, whilefthe
second and third terms give the potential of the shifted
oscillator of frequency V3@, and the oscillator of

[ 2 2 . . .
frequency /@, — @, , respectively. The relative motion

equation (6) may be approximated by a
Schrodinger equation

soluble

o°
e

@)y ¥ =we

)+3w; (x—x,) + (@) -

in

(25)
the eigenvalues of which are of the form

1 2
. =§(3<2)3w; +4(ﬁ(§+n)wx

(26)
+ (% +m)\|@, — o))

and the eigenfunctions are given by
¥,y =Y,¥, ) .an

where
V3o,

¥n~e 2 H (VBe, (- x,) @8
1 22y
and¥, (M ~e? T H, (ol -aly)

29

The states with well-defined parity (x; y) may be
constructed as

Y, (60 =, £, ()Y, () .

(30)

where the sign + /- corresponds to the solution that is even/
odd in x.

For gauging the quality of the approximation we
solved the relative motion equation (6) numerically with
the help of the Rayleigh-Ritz method using the basis of the
two-dimensional harmonic oscillator eigenstates. In Fig.4,
the bound state energies are plotted for an exemplary value
@, = 1/3. The structure of the spectrum changes
dramatically as @, increases since the states with spatial
parity (-, +), (+,-) tend to become degenerate with those of
(+, 1), (-), respectively. We may see that the spectrum of
(6) is well approximated by the expression (26) in the
considered range of @, Observe that each state of the
harmonic model provides approximation to the two states,
namely the singlet (the same x- and y- parity ((+,1), (-,-))
and the triplet (different x- and y- parities ((-,+), (+,-)), and
the approximate energy lies in between the energies of the
two states. The approximation becomes exact in the limit
of @,—0, when the singlet and triplet states become
degenerate.

It may be easily checked that for decreasing values of
@, the singlet and triplet eigenvalues get close at smaller
values of @, and the spectrum is better and better
approximated by the expression (26).

@

o

nlesy |

Fig. 4. Bound-state energies of the two-electron QD with
confinement frequency @, = 1/3 in function of Lnew,. The
exact energies of the states of parity (+, +),(-~ +),(+,
+),(~ +) and those of parity (+,-), (--),(+,-), (--) are
compared with the harmonic approximation (n,m) that
are marked by crosses. The lines are ordered from below.

Using the wave function (30) for n,m =0, the ground-
state density n(x, y) in the harmonic approximation for
<< 1 may be estimated as
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Then for small @, the charge density has the maxima
in the points of classical equilibrium (x./2, 0); (-xc/2, 0).
o =0.1
crystallization occurs independently of the value of
frequency @,.

The harmonic approximation describes also well the
local properties of the anisotropically confined system. In
Fig.5 we compare the density plot with the exact results
for the aspect ratio @, : @, = 2 in two cases: that of strong
confinement (@, = 1/8) and that of weak confinement (w,
= (10 - 3\/6):1472). In both cases the agreement is
qualitatively good. For larger anisotropy the performance
of the harmonic approximation is even better in accord
with the tendency shown in energetic plot of Fig.4.

This attests that for @, smaller than

- / W@

Fig. 5. Comparison of the exact density with the

harmonic approximation (31) for the confinement aspect

ratio ®,: @, =2 in the cases of w, = 1/8 (upper plots) and
= (10 - 3v6) =1472 (lower plots).

4. Conclusions

We have studied the 2D QD consisting of two
interacting electrons confined in an anisotropic harmonic
potential. Using the closed-form expressions for wave
functions at particular values of confinement strength, the
one-particle density and the correlation functions have
been obtained in the case of isotropic confinement and in
the case of anisotropy aspect ratio @, : @ = 2. The
frequencies at which the exact solutions exist correspond
to the interesting case of weak confinement, which

allowed us to study the correlation effects and formation
of the Wigner molecules. Various correlation measures
have been discussed. By a comparison with the exact
results we have shown that the harmonic approximation
for the QD with an arbitrary confinement anisotropy
performs well in the weak confinement case.

5. Appendix. Quasi-exact solutions
A. Isotropic case: @y, : ax =1
The solution of (13) is represented by [15]

Pp 2

2’ zaipi

i=0

p ||+
uw(p)=p" e (2)

where the coefficients g; satisfy the recurrence relation

Aiair 1 +Biai+Cia;i =0 (33)

With

=@+ 1)Gi+2/ml+1)
B;=-1

Ci=&-2ai+/m) (34

The values of @, for which the series in (32)
terminates after a finite number of terms are determined by
solving the pair of algebraic equations

B, A4, - ... 0
C, B 4 0
0 C B A 0
Det 2 ? =0 (35)
O Cn—l n—1 An—l
0 C, B,

And
&=2aw,i +n+ /m/) (36)

at a chosen value of n = 1, 2, .... and a closed-form

solution of energy & exists.

,i
Y = T+ p) G0
Rk F \/T
. 2
¥, =, (p.0)= e ¥(1+
s Varx \/6(25 18437 (38)
p+p’/6)
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B. Anisotropic case: @, : ax = 2

The solutions of the equations (17) are represented as
[16]

4
@ n

gmB)=e * Y am™ (39)
i=0

where aéj ) % 0, and v =0, 1 correspond to the even-and
odd-parity case, respectively. The three-term recursion
relation for the expansion coefficients al.(j ) has the form

Aall+Ba” +Cal’) =0 (40)

i i+1
Where

Ai=Qi+v+1D)2i+v+2)
B(f) :_B_
i J
Ci=&+(-4i-2vo, (41)

with al.(j ) =0 for i < 0. The conditions of quasi-solvability
for j = 1,2 are of the form

B(()ﬁ 4, 0
¢, BY 4 - 0
0 C B(,/’) A 0 (42)
Det : : : =0
0 - G B:i{)l 4,
0 ... C BY
And
d=w(3+4n+2v) ,(43)
with the imposition of B,+B, = 2. These equation

determine the values of @, for which the closed form
solution of Eq. 6 exists. The bound-state energy is given
by (43).

The normalized wave function of the relative motion
in cartesian coordinates for n = 1 and n = 2, are of the form

1

2\/ (1272\5 + F[— ﬂ + ZFLIJ ) (44)

e 6 (1+%x2 +4xt+ %)

Y, = (xy)=

o, 1
8

. 1
\Pw‘ =L(an’) = 3 > >
* 32768 % 24\/ 257+ 3r[ﬂ + 26r[ﬂ

e " (X +32x2(10+ /x> + 17 ) +1288 + *

+8yx* + %)

(45)
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