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We study the two-dimensional system of charged particles in an anisotropic harmonic potential which serves well as a 
model of a quantum dot. A numerical analysis of the dependence of the one-particle density and the correlation functions on 
the harmonic frequencies aspect ratio is presented. For the two-particle system we show that in the case of aspect ratio ωy : 
ωx = 2, when the problem becomes completely separable, the quasi-exact solutions may be obtained at particular values of 
confinement frequencies. We use the analytically known eigenfunctions to derive the exact results for various correlation 
characteristics of the system. The frequencies at which the exact solutions exist correspond to the interesting case of weak 
confinement, where the correlation effects are important and manifest by formation of Wigner molecules. 
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1. Introduction 
 
Studies of quantum systems trapped in confining 

potentials attract considerable attention in view of their 
possible application to quantum computing. Particularly 
promising are the physically realized systems of charged 
particles such as quantum dots (QDs) or few-ion systems 
in electromagnetic traps. In both cases the inter-particle 
interaction is Coulombic and the confinement may be 
modeled by a harmonic potential, the anisotropy of which 
strongly influences the properties of the system. Such a 
potential not only provides a good approximation of 
realistic structures but also is convenient from the 
theoretical point of view since the center-of-mass motion 
may be separated out. Here we concentrate on the two-
dimensional (2D) structures, realized by nanoscale 
semiconductor QDs containing a tunable number of 
electrons that are formed by etching techniques or 
patterning of the gate electrodes [1]. As a simple example 
of a quantum mechanical system, the QDs are a useful tool 
for testing approximation techniques in many-body theory. 
The case of weak confinement (low density limit) where 
the correlations between electrons become stronger [2] is 
especially interesting. When the Coulomb interaction 
dominates, the electrons tend to localize around the 
classical equilibrium positions, creating ordered spatial 
structures called Wigner molecules, which are the finite 
size counterpart to the crystal phase of the electron gas 
predicted by Wigner [3]. At present the problem of 
crystallization in circular quantum dots containing many 
electrons is well understood [4]. The charge distribution in 
elliptical, square and triangular QDs has been also studied 
by using the exact diagonalization approach [5]. Especially 
the properties of QDs containing two electrons have been 
extensively investigated in the case of circular [6-8], 
elliptical [9] and polygonal [10, 11] confinement. 

In the present work we study the properties of the 
two-electron QD confined by an anisotropic harmonic 

potential 2
2

2
2

22
),( yxyxV yx ωω

+= further. The system 

is separable in two cases: that of  ωx= ω =ωρ,  and that of 
ωy :ωx=2 (equivalent to the case of ωy : ωx = 1/2, under the 
exchange of ωx and ωy). In the isotropic confinement case 
of ωx = ωy, the problem of the relative motion separates in 
polar coordinates. This case was much studied in the 
literature [12-14] and its quasi-solvability at particular 
values of frequency ωρ has been pointed out [15]. The 
closed-form solutions may be useful for determining the 
exact characteristics of the system. In the anisotropic 
confinement with the aspect ratio ωy : ωx = 2, the problem 
is separable in parabolic coordinates [9]. Recently we have 
shown that also in this case the closed-form solutions may 
be obtained for particular values of frequency ωx [16]. In 
this work we use the exact wave functions to determine 
various characteristics of QDs in both the ωy : ωx = 1 and 
ωy : ωx = 2 case. Later, we provide an approximate 
analytical approach that is particularly suitable to study the 
Wigner crystallization of electrons in a QD with an 
arbitrary anisotropy. The outline of our work is as follows. 
In section II we present the theoretical model of a two-
electron QD. 

In section III we discuss the separable cases and 
quasi-exact solutions which are used to study various 
ground state characteristics. The comparison of the 
harmonic approximation with the exact results is also 
made. The paper ends with concluding remarks in section 
IV. 

 
 
2. Two-electron quantum dot 
 
The Hamiltonian of the QD consisting of two 

electrons can be written as 
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where m* is the effective electron mass and *ε  the 
effective dielectric constant. The corresponding 
Schrödinger equation is given by 
 

HΨ(r1,r2)=εΨ(r1,r2),                        (2) 
 
After transformation ∗= axx /ˆ ; ∗= ayy /ˆ , where 

2/
2

emha ∗∗∗ = ε  is the effective Bohr radius, the 
equation takes a form 
 

)ˆ,ˆ(ˆ

)ˆ,ˆ(
ˆˆ

1ˆˆ2ˆˆ2
2
1

21

21
12

2

1

22222
ˆ

rr

rr
rr

yx
i

iyixri

Ψ=

Ψ⎥
⎦

⎤
⎢
⎣

⎡

−
+⎥⎦

⎤
⎢⎣
⎡ ++Δ−∑

=

ε

ωω ,         (3) 

 
where ham yxyx 2/ˆ ,

2
, ωω ∗∗=  ∗= R/ˆ εε  and the 

effective Rydberg constant 224 / ∗∗
∗ = εhemR . Notice 

that the dimensionless parameters yx,ω̂  measure the ratio 

of the confinement and interaction energies, and  yx,ω̂ →0 
corresponds to strong correlation regime. In the following, 
we skip the hats over the spatial coordinates, frequencies 
and energies. Introducing center of mass (CM) R = 1/2 (r1 
+ r2) =(X; Y ) and relative coordinates r = r2 - r1 = (x; y); 
the Hamiltonian splits into H = HR + Hr with the CM 
part )(44/ 22222 YXH yxR

R ωω ++−∇=  and the 
relative motion Hamiltonian 

[ ]
r

yxH yxr
r 122222 +++−∇= ωω  Upon 

representing the spatial wave function as the product of 
CM and relative motion functions 
 

),(),(),,,( yxYXYXyx rR ΨΨ=Ψ ,     (4) 
 

the equation of motion (3) yields the two equations 
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where ε = εR + εr. The solution of CM !equation (5) is 
given by 
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where Hn is the Hermite polynomial of nth order, and the 
corresponding energy reads 
 

)
2
1(2)

2
1(2, +++= mn yx

R
mn ωωε .     (8) 

 
The problem is thus reduced to solving the 2D relative 

motion equation (6), which can be performed numerically. 
The symmetry under electron exchange requires the spatial 
wave function to be symmetric or antisymmetric 
depending on the total spin of the system. As the 

CM coordinate remains the same upon the interchange 
of electrons, the symmetry requirement reduces to the 
symmetry of the relative wave-function under inversion r 
→ -r. Because of the invariance of equation (6) to 
reflections about the x- and y-axis, the (x; y)-parity of the 
relative motion spatial wave-functions is well-defined. 

In this work we study particularly carefully the two 
special cases, ωy = ωx and ωy = 2ωx, where the problem 
can be simplified by separating the variables. In both cases 
the problem appears quasi-solvable, i.e some solutions can 
be obtained in closed-form. We will use the exact 
solutions to study the ground state characteristics in both 
the isotropic and anisotropic confinement potential. 

 
 
3. Ground state characteristics 
 
There are various means to examine the 

characteristics of a quantum system. Here we compare 
them from the point of view of how well they describe the 
correlations of the two particles in a harmonic trap. The 
following characteristics will be discussed: one-particle 
density, pair correlation function and conditional 
probability distribution. Below we give the definitions of 
the considered functions specified for the two-particle 
system. 

1. The one-particle density is defined by 
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2. The pair correlation function (PCF) is given by 
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3. The conditional probability distribution (CPD) 
determines the probability for finding one particle at r = 
(x; y) given that the other is at r0 = (x0; y0). For the two 
particle system CPD is just proportional to the modulus 
squared of the wave-function 
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A. Exact results 
 
1. Isotropic confinement potential ωy = ωx = ωρ 
 
In the circularly symmetric case, the Schrödinger 

equation in polar coordinates (ρ;ϕ) is transformed into 
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By substituting 
,...1,0,/)(),( ±==Ψ mue rimr ρρρϕ ϕ  

 in the above, we get the radial equation 
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The quasi-exact solutions to the above equation found by 
Taut [15] may be enumerated by integer numbers n. In this 
work we consider the four lowest values of n, for which 
the exact wave functions correspond to ground states. The 
values of confinement frequencies 

5.0
2
11 ===n

ρω  

0833.0
12
12 ≈==n

ρω  

0270.0)7310(
54
13 ≈−==n

ρω  

0118.0)33325(
656
14 ≈−==n

ρω        (14) 

 
are determined by the procedure described in the 
Appendix, where the corresponding wave functions can be 

also found. It turns out that 
2
11 ==n

ρω  is the largest value 

of confinement frequency at which the exact solution is 
known. 
 

 
 

Fig. 1. Charge density, PCF and CPD for the two-
electron QD in the case of isotropic confinement 

 
 

In Fig. 1 we have plotted the density, PCF and CPD in 
the above four cases. The one-particle density (plotted in 
the left column) and the PCF (plotted in the midle column) 
are circularly symmetric. It can be noted that for 
decreasing ωρ, the maximum of the charge density moves 
from ρ= 0 to the circle of a radius ρcl/2, where 

3
2

3
1

2/1 ρωρ =cl  is the classical equilibrium distance 
between Coulomb interacting particles in the trap. 
Similarly, we may observe how the radius ρmax, at which 
the PCF attains a maximum, shifts toward ρcl=2. 

The most informative picture is obtained from the 
CPD if the reference particle is fixed at its most probable 
position, namely in the point rmp = (ρmax/2,0), where ρmax is 
determined from the maximum of the PCF. The CPD in 
function of the position of the second electron r, namely 
P(r; rmp), plotted in the right column of Fig.1, clearly 
shows that for ωρ < 0.01, a Wigner molecule is formed. 
Observe that the Wigner crystallization does not show up 
in the density plot, because the charges of separate particle 
are not distinguishable in the rotationally invariant 
electron density. This corresponds to the fact that the 
lowest classical configuration is infinitely degenerate with 
respect to rotations around the center of the trap. 
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2.Confinement potential with anisotropy ωy : ωx = 2 
 

In the case of anisotropic confinement the only 
separable case is that of ωy=2ωx. In 2D parabolic 
coordinates 

( ) 0
2
1, 2

2
2

2
121 ≥−== ηηηηη yx ,  (15) 

the Schrödinger equation (6) is transformed into the form 
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For ωy=2ωx the above equation is solved by 
)()(),( 221121 ηηηη gg=Ψ  and the relative motion 

problem is separated into the two ordinary differential 
equations of the identical form 
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which are coupled by the condition β1+β2 = 2 to be 
satisfied by the separation constants β1 and β2 . Bound-
state solutions are obtained at the values of εr and βj such 
that the functions ),( 21 ηηΨ  vanish, as ⎢η1⎢,η2→∞. 
The ground state solutions, in which we are interested in 
the present work, correspond to the case of β1  = β2 = 1 
and the functions gj(ηj) not having the nodal points. 
As we have recently shown, the coupled equations (17) 
appear quasi-solvable [16]. Th=e solution can be found in 
closed form for particular values of ωx that are enumerated 
by an integer number n as discussed in the Appendix. The 
values of ωx for n = 1; 2; 3; 4 are calculated to be given by 

125.0
8
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0018.0)6310(
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They correspond to ground-states and, similarly as in 
the case of isotropic confinement, they decrease for 
increasing n. The plots of the density in the above four 
cases are presented in Fig.2, where the positions of the 
charges in the classical configuration ((xcl/2, 0), (-xcl/2, 0)) 

are also marked with 3
2

3
1

2/1 xclx ω=  being the classical 
distance between the electrons. The density is anisotropic, 
reflecting the shape of the confining potential, and for 

decreasing ωx it tends to become spatially separated with 
Gaussian-like peaks around the classical equilibrium 
points. The number of density maxima is equal to the 
particle number, which is the consequence of the fact that 
the lowest classical configuration of the two-particle 
system is non-degenerate. This is in difference to the case 
of isotropic confinement, where the Wigner crystallization 
does not show up in the density plot. 
 

 
Fig. 2. Charge density, PCF and CPD of the two-

electron QD in the case of anisotropic confinement 
 
 
 

The PCF is plotted in the middle column of Fig.2, its 
behavior appears very similar to that of the density, only 
the distances between the maxima xmax are slightly 
different. In the last column we placed the plots of CPD 
with the reference electron located in the most probable 
position rmp = (xmax=2; 0) as a function of the second 
electron position P(r; rmp). In the case of the weakest 

confinement (
8
11 ==n

xω ), the CPD has a maximum in 

the point (-xmax/2, 0) that is diametrical to the position of 
the reference electron with respect to the center of the trap, 
but the probability of finding the second electron around 
the first one is not negligible. This indicates that the 
molecular-like state is not formed in agreement with the 
fact that crystallization is not observed in the density plot. 
For decreasing ωx, the probability of finding the second 
electron decreases around the reference electron position 
creating a correlation hole. The electrons get more and 
more localized in the vicinity of the points 
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(xmax/2, 0) and (-xmax/2,0), which become close to the 
classical equilibrium point. In the case of 

0018.04 ≈=n
xω  the correlation hole around the reference 

electron clearly attests the presence of the Wigner 
crystallization. 

 
 
3. Correlation measures 
 
The accurate description of an N-body interacting 

system is a difficult task. The Hartree-Fock picture is 
usually used as a first approximation since it provides a 
simple way understanding by mapping an interacting 
system onto a system of non-interacting particles moving 
in a self-consistent field of other particles. In the one-
particle picture, the exchange correlations due to Fermi 
statistics are accounted for, since the wave function of the 
system is approximated by a determinant of single electron 
functions, but the correlations arising from the mutual 
interaction of electrons are beyond the scope of this 
approach. The possible ways of including the Coulomb 
correlations into this picture have been discussed first by 
Wigner and Seitz [17]. They introduced a quantity called 
the correlation energy, defined by the difference between 
the exact ground-state energy and its Hartree-Fock 
approximation 

 
Ecorr=E-EHF                                                      (19) 

 
which is frequently used until now as an energetic 

measure of the correlation effect. However, Ecorr is not a 
measurable quantity and its determination with the chosen 
method of ground-state energy calculation is inconvenient 
as it requires the Hartree-Fock calculation to be 
additionally performed. In strict sense Ecorr is not a 
measure of the true correlation strength but a measure of 
quality of the HF approximation. This shows up in the fact 
that Ecorr does not vanish in the limit of vanishing 
interaction between electrons [18]. Therefore, various 
purely quantum-kinematical measures have been 
considered [19]. The simplest possibility of statistical 
correlation coeficients has been discussed by Kutzelnigg et 
al. [20]. Here we consider the Kutzelnigg coefficient that is 
defined as a scalar quantity 
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where the expectation values <r> and <r2> are 
determined by the one-electron density and 21 rr ⋅  is 
determined by the two-electron distribution. For the two-
electron system the expectation value of a function f of one 
variable r is given by 
 

∫= drrnrfrf )()(
2
1)(                  (21) 

 
and that of a function f of two variables r1 and r2 reads 
 

∫= 21
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212121 ),(),(),( drdrrrrrfrrf φ ,      (22) 

 
Since the origin of coordinate system is chosen in the 
center of the harmonic trap, Eq.20 simplifies to the form 
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⋅
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that shows that ⎢τ ⎢≤1. The Kutzelnigg coeficient vanishes 
for independent particles, and its limiting values 
correspond to perfect correlations case, with τ = 1 for 
coincident electrons positions and τ = -1 for positions 
diametrical with respect to the center of the trap. 
 
 

 
Fig. 3. Kutzelnigg coefficient τ calculated for four exact 
states in the case of isotropic (full line) and anisotropic  
                            confinement (dotted line). 

 
 

In Fig.3 we plotted the vales of the Kutzelnigg 
coefficient for the exactly known states of the two-electron 
QD at the partiycular values of ωx and ωy frequencies. In 
order to compare the isotropic and anisotropic 
confinement cases, the results are presented in function of 
the geometric mean of the frequencies, yxωω  that is a 

measure of 
confinement strength. For yxωω → 0, the value of 

the Kutzelnigg coefficient decreases and tends to the value 
τ = -1, which corresponds to the perfect Wigner 

crystallization. We may see that anisotropy increases 
correlations and the Wigner crystallization occurs at 
stronger 

confinement than in the corresponding spherical QDs. 
 
B. Harmonic approximation 
 
We have shown that Wigner crystallization for the 

circularly symmetric two-electron QD takes place if ωρ is 
smaller than some critical value  
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01.0≈cr
ρω . This case has been studied in the 

harmonic approximation [6] and it has been shown that a 
qualitatively good description of the strong correlation 
regime is obtained [6, 8]. We have shown that in the case 
of anisotropic confinement with the aspect ratio ωx : ωy = 1 
: 2, where the exact solutions are available, the critical 
value cr

ρω  below which the Wigner crystallization occurs 
is larger than in the circularly symmetric case. Here we 
will study the case of anisotropic confinement potential 
with an arbitrary aspect ratio using the harmonic 
approximation, which is expected to perform well in the 
case of weak confinement. 

If  ωy >ωx , the potential 
222222 /1),( yxyxyxV yx +++= ωω in the relative 

motion equation (6) has two local minima at the classical 
equilibrium points (xcl, 0) and (-xcl, 0). Expansion into a 
Taylor series around the minimum at rmin = (xcl, 0) yields 
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where the first term is a classical dot energy, whilefthe 
second and third terms give the potential of the shifted 
oscillator of frequency √3ωx and the oscillator of 

frequency 22
xy ωω −  , respectively. The relative motion 

equation (6) may be approximated by a soluble 
Schrödinger equation 
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the eigenvalues of which are of the form 
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and the eigenfunctions are given by 
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The states with well-defined parity (x; y) may be 
constructed as 
 

)())()((),(, yxxyx mnn
r

mn Ψ−Ψ±Ψ=Ψ  ,                   
(30) 

where the sign + /- corresponds to the solution that is even/ 
odd in x. 

For gauging the quality of the approximation we 
solved the relative motion equation (6) numerically with 
the help of the Rayleigh-Ritz method using the basis of the 
two-dimensional harmonic oscillator eigenstates. In Fig.4, 
the bound state energies are plotted for an exemplary value 
ωx = 1/3. The structure of the spectrum changes 
dramatically as ωy increases since the states with spatial 
parity (-, +), (+,-) tend to become degenerate with those of     
(+, +), (-,-), respectively. We may see that the spectrum of 
(6) is well approximated by the expression (26) in the 
considered range of ωy. Observe that each state of the 
harmonic model provides approximation to the two states, 
namely the singlet (the same x- and y- parity ((+,+), (-,-)) 
and the triplet (different x- and y- parities ((-,+), (+,-)), and 
the approximate energy lies in between the energies of the 
two states. The approximation becomes exact in the limit 
of ωy→∞, when the singlet and triplet states become 
degenerate. 

It may be easily checked that for decreasing values of 
ωx, the singlet and triplet eigenvalues get close at smaller 
values of ωy and the spectrum is better and better 
approximated by the expression (26). 
 

 
 

Fig. 4. Bound-state energies of the two-electron QD with 
confinement frequency ωx = 1/3 in function of Lnωy. The 
exact energies of the states of parity (+, +),(-, +),(+, 
+),(-, +) and those of parity (+,-), (-,-),(+,-), (-,-) are 
compared with the harmonic approximation (n,m) that 
are marked by crosses. The lines are ordered from below. 

 
 

Using the wave function (30) for n,m =0, the ground-
state density n(x, y) in the harmonic approximation for ωx 
<< 1 may be estimated as 
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Then for small ωx the charge density has the maxima 

in the points of classical equilibrium (xcl/2, 0); (-xcl/2, 0). 
This attests that for ωx smaller than  1.0≈cr

xω  
crystallization occurs independently of the value of 
frequency ωy. 

The harmonic approximation describes also well the 
local properties of the anisotropically confined system. In 
Fig.5 we compare the density plot with the exact results 
for the aspect ratio ωy : ωx = 2 in two cases: that of strong 
confinement (ωx = 1/8) and that of weak confinement (ωx 
= (10 - 3√6)=1472). In both cases the agreement is 
qualitatively good. For larger anisotropy the performance 
of the harmonic approximation is even better in accord 
with the tendency shown in energetic plot of Fig.4. 
 

 
 

Fig. 5. Comparison of the exact density with the 
harmonic approximation (31) for the confinement aspect 
ratio ωy:ωx =2 in the cases of ωx = 1/8 (upper plots) and  
            ωx = (10 - 3√6) =1472 (lower plots). 

 
 

4. Conclusions 
 
We have studied the 2D QD consisting of two 

interacting electrons confined in an anisotropic harmonic 
potential. Using the closed-form expressions for wave 
functions at particular values of confinement strength, the 
one-particle density and the correlation functions have 
been obtained in the case of isotropic confinement and in 
the case of anisotropy aspect ratio ωy : ωx = 2. The 
frequencies at which the exact solutions exist correspond 
to the interesting case of weak confinement, which 

allowed us to study the correlation effects and formation 
of the Wigner molecules. Various correlation measures 
have been discussed. By a comparison with the exact 
results we have shown that the harmonic approximation 
for the QD with an arbitrary confinement anisotropy 
performs well in the weak confinement case. 

 
 
5. Appendix. Quasi-exact solutions 

 
A. Isotropic case: ωy : ωx = 1 

 
The solution of (13) is represented by [15] 
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where the coefficients ai satisfy the recurrence relation 
 

Aiai+1+Biai+Ciai-1=0             (33) 
 

With 
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Bi = -1 

Ci = εr - 2ωρ(i + ⎜m⎜)       (34) 
 
 

The values of  ωρ, for which the series in (32) 
terminates after a finite number of terms are determined by 
solving the pair of algebraic equations 
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And 
 

εr = 2ωρ(i +n+ ⎜m⎜)   (36) 
 
at a chosen value of n = 1, 2, …. and a closed-form 
solution of energy εr exists. 
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B. Anisotropic case: ωy : ωx = 2 
 

The solutions of the equations (17) are represented as 
[16] 
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where 0)(

0 ≠ja , and ν = 0, 1 correspond to the even-and 
odd-parity case, respectively. The three-term recursion 
relation for the expansion coefficients )( j

ia   has the form 
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Where 
 

Ai = (2i + ν + 1)(2i + ν + 2) 
)( j

iB  = -βj 

Ci = εr + (1 -4i -2ν)ωx                (41) 
 

with )( j
ia  = 0 for i < 0. The conditions of quasi-solvability 

for j = 1,2 are of the form 
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And 

εr = ωx( 3 + 4n + 2ν)                        ,(43) 
 
with the imposition of β1+β2 = 2. These equation 
determine the values of ωx for which the closed form 
solution of Eq. 6 exists. The bound-state energy is given 
by (43). 

The normalized wave function of the relative motion 
in cartesian coordinates for n = 1 and n = 2, are of the form 
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